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A ®gure giving the point groups for all combinatorially non-isomorphic C20 to

C60 fullerenes (5770 in common) is contributed. The fullerenes of 6 to 120

automorphism group orders (80 in common) are drawn in the Shlegel

projections and characterized by the point groups.

1. Introduction

There is no doubt that the laboratory synthesis (Curl & Smalley,

1988) and subsequent ®ndings of stable C60 clusters in rocks

(Zeidenberg et al., 1996) are the most impressive events in carbon

crystallography and mineralogy for the last 15 years. The fullerenes of

less than 60 atoms are known to be unstable and registered in physical

experiments in a minor amount, with those of 20±36 atoms forming a

`restricted zone' (Helden et al., 1993). But just these types of full-

erene-like crystalline pores were identi®ed in many clathrate

compounds over the last 50 years (Ripmeester & Ratcliffe, 1998).

Hence, our idea is to systematically generate the series of fullerenes

up to the well known C60 shape.

2. Characterization of fullerenes

We de®ne fullerenes as simple (three edges meet at each vertex)

polyhedra, with only pentagonal and hexagonal facets allowed. Let f5

and f6 be the numbers of pentagonal and hexagonal facets and f, e and

v be the numbers of facets, edges and vertices of any fullerene. Then,

f5 � f6 � f ; 5f5 � 6f6 � 2e and f5 � 6f ÿ 2e:

At the same time,

f ÿ e� v � 2; 2e � 3v and 6f ÿ 2e � 12:

Hence,

f5 � 12; f � 12� f6 with f6 � 0:

It follows from the above that

v � 2f ÿ 4 � 20 and f6 � f ÿ 12 � v=2ÿ 10:

Thus, any fullerene may be characterized by the vertex Cv and facet

5126v=2ÿ10 notations. We use the latter in the generating algorithm.

Most of the above equations are due to Euler. They are provided here

for the readers' convenience.

3. Generating algorithm

We construct a fullerene in the Shlegel projection in the following

way. A general idea is to take the ®rst facet and surround it by other

facets numbered clockwise. Then, the same procedure should be

repeated with the facets numbered as 2, 3 etc. As the fullerenes are

simple polyhedra, only three facets meet at each vertex. The last facet

should be the basal one of the Shlegel projection.

In the simplest case of fullerene 512, we begin with a pentagonal

facet and build the only possible projection (Fig. 1, No. 1). For full-

erene 51261, we begin with the hexagonal facet and try to build the

projection. This procedure does not lead to a fullerene. For fullerenes

5126n with n > 1, we also begin with a hexagonal facet. But, in this

case, to check all the variants, we previously enumerate the (6, . . . )

sequences with any permutations of n ÿ 1 sixes in n� 11 dotted

positions. Then we generate the facets in the above procedure in

accord with them. For example, the (6, 5, . . . , 5, 6) sequence leads to

the only fullerene 51262 (No. 2). The generating procedure is stopped

in three cases: (a) a fullerene is built in accord with a given sequence;

(b) a fullerene is not built if the given facets are already exhausted;

(c) at some step, the next facet would not be pentagonal or hexag-

onal.

The duplicated fullerenes of the same combinatorial type for a

given 5126n formula should be eliminated. To do this, we use their

adjacency matrices for arbitrary initial numbering of the vertices. Two

fullerenes belong to the same combinatorial type if and only if their

adjacency matrices are reducible to each other by the symmetrical

permutations of rows and columns. Afterwards, we calculate the

automorphism group order of a given fullerene as the number of

different vertex reindexings that save its adjacency matrix.

4. Results and discussion

The series of C20 to C60 fullerenes was found to consist of 5770

representatives. They are characterized by the automorphism group

orders and point groups in Fig. 2. As in a general case (Voytekhovsky,

2001), they mostly belong to 1, 2 and m classes. For given v, the

variety of Cv fullerenes slightly drops as an automorphism group

order increases. Simultaneously, their physical stability is known to

increase (Curl & Smalley, 1988; Helden et al., 1993). The fullerenes of

6 to 120 automorphism group orders are in Fig. 1:

C20: 1 (�3�5m); C24: 2 (12m2); C26: 3 (�6m2); C28: 4 (�43m); C30: 5

(10m2); C32: 6 (32), 7 (�3m), 8 (�6m2); C34: 9 (3m); C36: 10, 11 (�42m), 12

(�6m2), 13 (6=mmm); C38: 14 (32), 15 (3m), 16 (�6m2); C40: 17 (3m), 18

(mmm), 19, 20 (�5m), 21 (�43m); C42: 22 (32); C44: 23, 24 (32), 25 (23),

26±28 (�3m), 29, 30 (�6m2); C48: 31 (32), 32, 33 (mmm), 34, 35 (12m2);

C50: 36, 37 (32), 38 (3m), 39 (�6m2), 40, 41 (10m2); C52: 42, 43 (3m), 44,

45 (mmm), 46±50 (�42m), 51 (23); C54: 52 (32), 53 (�6m2); C56: 54±59
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Figure 1
C20 to C60 fullerenes of 6 to 120 automorphism group orders in the Shlegel projections. See text for the point groups.
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(32), 60 (mmm), 61 (�42m), 62, 63 (�3m), 64 (�43m); C58: 65, 66 (3m); C60:

67±69 (32), 70 (3m), 71 (mmm), 72±75 (�42m), 76 (52), 77 (�5m), 78, 79

(6=mmm), 80 (�3�5m).

Except for the famous No. 80 shape, Nos. 34, 35, 40, 41, 64 and 77±

79 appear to be the most probable fullerenes in physical experiments.

They are far from the `restricted zone' and can be realized as shapes

of rather high symmetry.

Except for Nos. 1, 2, 5, 19, 20, 34, 35, 40, 41, 76, 77 and 80, most of

the C20 to C60 fullerenes are of crystalline symmetry. Hence, they may

be considered as probable structural units of various crystalline (e.g.

clathrate) compounds.

The authors acknowledge great bene®t from the highly skilled

comments made by the referee.
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Figure 2
Point-group statistics for C20 to C60 fullerenes


